Greenhouse gas mitigation options for California Agriculture Johan Six #### Sources of greenhouse gases in CA # Composition and sinks of greenhouse gases by agriculture ## N₂O Substrates - 1. Soil Moisture (WFPS) - 2. Inorganic N (NH₄⁺ & NO₃⁻) - 3. Soil Organic Carbon (SOC) ### N₂O Substrates - 1. Soil Moisture (WFPS) IRRIGATION/RAIN - 2. Inorganic N (NH₄⁺ & NO₃⁻) FERTILIZATION - 3. Soil Organic Carbon (SOC) TILLAGE #### Management changes (regional) | | | | Δ GWP | | ∆SOC | | $\Delta N_2 O$ | | |----------------|-------|-----------|---------------------|--------------------|--------|-----------------|----------------|-------------------------------------| | | Cover | | (Mg C | Ͻ₂-eq | (kg C | ; ha⁻' | | | | (Fertilizer) | crop | (Tillage) | ha ⁻¹ y | yr ⁻¹) | yr | ^{.1}) | (kg N | ha ⁻¹ yr ⁻¹) | | | | | | | | | | | | | | | Sacrame | ento Va | lley * | | | | | Mineral, (25% | | | | | | | | | | reduction) | no | CT | -0.89 | ± 0.76 | -2 | ± 16 | -1.92 | ± 1.59 | | Mineral | no | RT | -0.68 | ± 0.36 | +103 | ± 34 | -0.64 | ± 0.56 | | Mineral | yes | CT | -1.36 | ± 0.89 | +310 | ± 180 | -0.48 | ± 0.94 | | Mineral | yes | RT | -1.37 | ± 0.88 | +312 | ± 178 | -0.48 | ± 0.94 | | Organic | no | CT | -1.16 | ± 0.78 | +158 | ± 63 | -1.23 | ± 1.51 | | Organic | no | RT | -1.94 | ± 1.03 | +288 | ± 88 | -1.89 | ± 1.86 | | Organic | yes | CT | -2.60 | ± 1.87 | +405 | ± 212 | -2.38 | ± 2.81 | | Organic | yes | RT | -3.29 | ± 2.07 | +532 | ± 246 | -2.86 | ± 2.98 | CT = Conventional Tillage; RT = Reduced Tillage ^{*}Crops Included: Rice, Alfalfa, Cotton, Tomatoes, Winter Wheat, Corn, Safflower #### Management changes (regional) | | | | ∆GWP | | ∆SOC | | $\Delta N_2 O$ | | |---------------|------|-------------------------|-------------------------------------|-------------------------------------|-------------------|-------|---|--------| | Cover | | (Mg CO ₂ -eq | | (kg C __ ha ⁻¹ | | | | | | Fertilizer | crop | Tillage | ha ⁻¹ yr ⁻¹) | | `yr ⁻¹ |) | (kg N ha ⁻¹ yr ⁻¹) | | | | | | Sacram | ento Va | llev * | | | | | Mineral, (25% | | | | | , | | | | | reduction) | no | CT | -0.89 | ± 0.76 | -2 | ± 16 | -1.92 | ± 1.59 | | Mineral | no | RT | -0.68 | ± 0.36 | +103 | ± 34 | -0.64 | ± 0.56 | | Mineral | yes | CT | -1.36 | ± 0.89 | +310 | ± 180 | -0.48 | ± 0.94 | | Mineral | yes | RT | -1.37 | ± 0.88 | +312 | ± 178 | -0.48 | ± 0.94 | | Organic | no | CT | -1.16 | ± 0.78 | +158 | ± 63 | -1.23 | ± 1.51 | | Organic | no | RT | -1.94 | ± 1.03 | +288 | ± 88 | -1.89 | ± 1.86 | | Organic | yes | CT | -2.60 | ± 1.87 | +405 | ± 212 | -2.38 | ± 2.81 | | Organic | yes | RT | -3.29 | ± 2.07 | +532 | ± 246 | -2.86 | ± 2.98 | CT = Conventional Tillage; RT = Reduced Tillage ^{*}Crops Included: Rice, Alfalfa, Cotton, Tomatoes, Winter Wheat, Corn, Safflower #### Management changes (regional) | | | | ∆GWP | | ∆SOC | | $\Delta N_2 O$ | | | |---------------|------------|---------|--------|--|------------|----------------------------|----------------|----------------------------------|---| | Fertilizer | Cover crop | Tillage | (Mg Co | U ₂ -eq
vr ⁻¹) | (kg C | י na י
י ¹ ו | (ka N | ha ⁻¹ yr ⁻ | 1 | | i ci tilizci | СГОР | Tillage | iia , | y' <i>)</i> | <u>y i</u> | , | (Kg I | iia yi | | | | | | Sacram | ento Va | lley* | | | | | | Mineral, (25% | | | | | - | | | | | | reduction) | no | CT | -0.89 | ± 0.76 | -2 | ± 16 | -1.92 | ± 1.59 | | | Mineral | no | RT | -0.68 | ± 0.36 | +103 | ± 34 | -0.64 | ± 0.56 | | | Mineral | yes | CT | -1.36 | ± 0.89 | +310 | ± 180 | -0.48 | ± 0.94 | | | Mineral | yes | RT | -1.37 | ± 0.88 | +312 | ± 178 | -0.48 | ± 0.94 | | | Organic | no | CT | -1.16 | ± 0.78 | +158 | ± 63 | -1.23 | ± 1.51 | | | Organic | no | RT | -1.94 | ± 1.03 | +288 | ± 88 | -1.89 | ± 1.86 | | | Organic | yes | CT | -2.60 | ± 1.87 | +405 | ± 212 | -2.38 | ± 2.81 | | | Organic | yes | RT | -3.29 | ± 2.07 | +532 | ± 246 | -2.86 | ± 2.98 | | CT = Conventional Tillage; RT = Reduced Tillage ^{*}Crops Included: Rice, Alfalfa, Cotton, Tomatoes, Winter Wheat, Corn, Safflower # Status of N₂O budgets (2009) | Cropping System | # observations in literature | |---|---| | Corn
Rice
Wheat | 157
78
77 | | Alfalfa
Cotton
Tomato | 4
5
6 | | Fruit Orchards Nut Orchards Vineyards | $ \begin{array}{c c} 0 \\ \hline 0 \\ \hline 0 \\ 0 \\ \hline 0 \\ 0 \\ \hline 0 \\ 3 \\ 0 \\ \end{array} $ | | voy a a.c | 2 in progress | #### Almond orchard #### TREE ROW #### TREE ROW ## Cumulative N₂O emissions: Almond #### Vineyard ## Cumulative N₂O emissions: Vineyard ### **Processing Tomatoes** #### Typical Management Regimes #### **Conventional** - Conventional Tillage - Furrow Irrigation - Rip and Reform Beds #### **Integrated** - Reduced Tillage - Subsurface Drip Irrigation - Winter Grain Cover Crop - Preserve Planting Beds Kennedy et al. in prep #### Spatial Variability by Management Kennedy et al. in prep #### Biochar #### Reduces N₂O emissions in Walnut Pereira et al. in prep #### Increases N₂O emissions in Vineyard ## Summary annual N₂O emissions | Cropping system | Management | N ₂ O flux
kg N ₂ O-N | N input rate
kg N ha ⁻¹ yr ⁻¹ | Emission Factor % | |-----------------|------------|--|--|-------------------| | | | ha ⁻¹ | | | | Almond | BAU* | | | 0.35 | | Vineyard | BAU | | | 7.5 | | | BAU | | | 10.4 | | | BAU | | | 0.33 | | | Biochar | | 0.12 - 10.4% | 0.65 | | | Biochar | | | 0.82 | | Walnut | Organic | | | 1.17 | | | Biochar | | | 1.63 | | Tomato | BAU | | | 0.87 | | | Integrated | | | 0.29 | | Lettuce | Organic | | | 0.12 | | | Biochar | | | 0.12 | Fluxes in bold and italic are seasonal fluxes ^{*}BAU = Business as Usual ## Summary annual N₂O emissions | Cropping system | Management | N ₂ O flux
kg N ₂ O-N | N input rate
kg N ha ⁻¹ yr ⁻¹ | Emission Factor % | |-----------------|------------|--|--|-------------------| | · | | ha ⁻¹ | | | | Almond | BAU* | | | 0.35 | | Vineyard | BAU | | | 7.5 | | | BAU | | | 10.4 | | | BAU | | 0.66 - 10.4 % | 0.33 | | | Biochar | | | 0.65 | | | Biochar | | | 0.82 | | Walnut | Organic | | | 1.17 | | | Biochar | | | 1.63 | | Tomato | BAU | | | 0.8 7 | | | Integrated | | | 0.29 | | Lettuce | Organic | | | 0.12 | | | Biochar | | | 0.12 | Fluxes in bold and italic are seasonal fluxes ^{*}BAU = Business as Usual #### Conclusions - No silver bullets for N₂O mitigation; even biochar... - Simple emission factors fail → under- and overestimation - N₂O can be reduced without a yield penalty! #### Acknowledgements Taryn Kennedy Gina Garland Emma Suddick Bob Rousseau, Julian Herszage Ben Wilde, Garrett Heinz California Energy Commission Packard Foundation Thank you!